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C H A P T E R 1

Introduction

Foot-and-mouth disease (FMD) is a highly infectious disease of cloven hoofed animals

(Anonymous, 2012). It is caused by an Aphthovirus of the family Picornaviridae. Since

the first written description of FMD by Fracastorius in 1514 (Fracastoro, 1546), FMD

outbreaks have occurred in all regions of the world in which livestock are maintained

(Grubman and Baxt, 2004) except for New Zealand. Apart from Australia and North

America, FMD is enzootic on all continents (Figure 1.1).

The occurrence of FMD in any country automatically excludes that country’s participation

in international trade of livestock and livestock products. The World Organisation for

Animal Health (OIE) provides guidelines that each country must adhere to in order to be

considered free of FMD (Anonymous, 2013b). Countries can be certified free of FMD

by either complete eradication of the disease or by demarcating FMD free zones within

the country. In countries such as Zambia in which FMD is endemic, attainment and

maintaining FMD free zones is a necessary first step towards attaining FMD free status

and gaining access to lucrative international livestock markets.

Establishment of FMD free zones in Zambia and indeed any country requires a knowl-

edge of FMD hotspots, that is geographical areas where incursions of FMD are likely

to occur on a regular basis. The choice of areas within a country to designate as FMD

free will largely depend on the ability of the state veterinary service to either contain

the spread of disease should an incursion occur or to create defined areas into which in-

fectious livestock or infected material cannot gain entry. In addition, there is a need to

identify risk factors that are associated with FMD incursions in order to better target dis-

ease surveillance measures. A detailed knowledge of factors shown to increase the risk of
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FMD incursions provides useful information when defining the extent of FMD-free zones

and for identifying the location of FMD hotspots.

This thesis is comprised of two chapters. Despite spatial point pattern analysis having

been applied in scientific fields such as ecology for many years, its application in medicine

is still in its infancy. The intent of the material presented in Chapter 2 is to provide a

broad overview of the techniques that can be used for the analysis of spatial point patterns

and a description of how these techniques can be applied in a veterinary epidemiological

context. Chapter 3 applies many of the theoretical concepts described in Chapter 2 in

an analysis of risk factors for FMD in Zambia for the period 1981 to 2012. For coun-

tries where FMD is endemic details of the location and timing of outbreaks, gathered

over a number of years, provides a useful starting point for development of risk-based

approaches for FMD surveillance. Knowledge of the location of FMD hotspots and the

geographic features that render physical locations more likely to be FMD hotspots mean

that measures can be deployed in these areas to either reduce the likelihood of incursion

or reduce the likelihood of spread of disease if and when an incursion occurs. Ultimately

this approach should reduce the number of infected livestock enterprises, minimising pro-

ductivity losses in susceptible populations.
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Figure 1.1: Countries in which FMD was reported to the OIE between 1990 and 2002. Data
compiled by Knowles (URL: http://www.wrlfmd.org/maps/fmd_maps.htm).

http://www.wrlfmd.org/maps/fmd_maps.htm
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Spatial point pattern analyses: A review

2.1 Introduction

The gathering of disease event data by animal health authorities has almost always in-

cluded documentation of the location of the event as well as the date of occurrence of

the event. With continued advancements in mobile communications technology and more

widespread use of global positioning system (GPS) enabled smart phones the process of

recording precise details of events in space and time has become relatively easy. Further-

more, a wireless Internet connection capability on smart phones means that information

that has been captured in the field can be seamlessly uploaded to disease event databases,

eliminating the need for personnel to manually transfer event records from one device to

another.

Before the advent of this technology location details were typically recorded in text format

(e.g. the name of an affected farm or locality); with a GPS-enabled smart phone location

details can be directly recorded as point locations, typically in longitude-latitude format.

In turn this has increased both the speed and the accuracy of disease event data collection.

So, while data collection has become substantially easier in recent years what is not so

clearly defined is the suite of analytical methods that can be used by epidemiologists to

‘make sense’ of accumulated information. While analytical methods to display, describe

and explain disease events aggregated to the area level are well described (Bailey and

Gatrell, 1995; Pfeiffer et al., 2008) analogous methods for point data are not so clearly

defined, nor have they been demonstrated to be robust for inference and decision making

across a range of real-world data sets in a veterinary context. We propose that this is

not so much due to a problem with the point process analytical techniques themselves,
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but more due to a lack of accessibility of these techniques to the community of veterinary

epidemiologists in general. With these comments, the purpose of this chapter is to provide

an overview of techniques suitable for the analysis of animal health point pattern data

sets. Our intention is to document a system for classifying available methods, to briefly

describe them, list their strengths and their weaknesses and to finally provide examples of

where they have been used in a veterinary context.

2.1.1 General concepts

In point pattern analysis, interest lies in determining how an observed set of point loca-

tions relate to each other. That is, we want to know if there is some factor underlying (i.e.

explaining) the observed distribution of points and/or is there interaction among points. In

general terms the observed distribution of point events is comprised of two components:

(a) broad-scale trend, and (b) interaction among individual points.

Broad-scale trend arises from a dependence of the event of interest on one or more ex-

planatory variables, for example physical features of the environment such as roads, soil

type, temperature or humidity (Baddeley and Turner, 2005; Illian et al., 2007). Broad-

scale trend means that there is systematic variation in the intensity of points that varies

depending on proximity to a given explanatory variable. Aggregation of disease events

around a hazard (for example, a nuclear power plant or an industrial incinerator) in the

absence of other factors produces a marked broad-scale trend: a higher intensity of dis-

ease events closer to the hazard with a decreasing intensity as distance from the hazard

increases. Colloquially the term ‘cluster’ is used to describe this pattern of disease events.

Spatial interaction, on the other hand, refers to the degree of attraction or repulsion among

points measured at a given spatial scale (Pfeiffer et al., 2008). In epidemiology, interac-

tion is more likely to occur with infectious diseases than it is for non-infectious diseases.

This is because the occurrence of an infectious disease in one physical location is likely to

influence the presence of disease in susceptible individuals located nearby. Quantifying

the amount of spatial interaction among point (e.g. farm) locations provides important

information that can be used to inform development of disease control strategies such as

setting the diameter of foot-and-mouth disease (FMD) ring vaccination radii, establishing

buffer zones around infected and detected farms and setting boundaries for animal move-
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ment controls. Unlike the physical clusters described above (where the location of disease

events are clearly aggregated) spatial interaction (that is, ‘clustering’) can still be present

even when it is not immediately apparent on visual inspection of a point map. To clarify

the distinction between the two we propose that the term physical clustering is used to

describe the situation where there is an aggregation of point events in defined physical

locations (i.e. broad-scale trend is present) and interaction clustering is used to describe

the situation where there is spatial interaction amongst point events.

Despite spatial point pattern analysis becoming increasingly prominent in the early 1960s

with applications confined to the fields of plant ecology, forestry, geology and astronomy

(King, 1962; Gatrell et al., 1996), robust statistical methods for the analysis of spatial

point patterns have only become widely available in recent years (Baddeley and Turner,

2005; Turner, 2009). In the late 1950s and early 1960s spatial point pattern analysis

primarily involved distance-based techniques (Haggett et al., 1977; Gatrell et al., 1996)

which involved measuring the distance between all pairs of point events. Area-based

methods involved aggregating point events into a regular lattice of areas applied over a

region of study and comparing the frequency of events in each cell with that expected

under the assumption of complete spatial randomness.

Prior to 2005 the widespread usage of spatial point process analytical techniques was

hampered in part by a lack of widely available and easy-to-use software (Gatrell et al.,

1996). At the time of writing, a number of fully featured easy-to-use commercial and

open-source Geographic Information Systems (GIS) are available allowing users to vi-

sualise, describe and explain the spatial distribution of point events with relative ease.

Fully featured, open source GIS packages include Quantum GIS (QGIS Development

Team, 2009) and GRASS (GRASS Development Team, 2012). A particular feature of

the Quantum GIS system is its ability to integrate with other software packages such as

R (R Development Core Team, 2014) and PostgreSQL (The PostgreSQL Global Devel-

opment Group, 2014). An attractive feature of R is that it is the software development

platform used by most spatial statisticians which means that newly developed methods

are typically made publically available as contributed R packages many years before they

are implemented within main-stream commercial software. Examples of R packages for

spatial analysis include spatstat (Baddeley and Turner, 2005), sp (Pebesma and Bivand,

2005), splancs (Rowlingson and Diggle, 1993) and sparr (Davies et al., 2011).
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2.2 Visualising spatial point patterns

The most frequently method used to visualise point data is to simply plot the Cartesian

coordinates of each event as a point location within a defined area of study. When using

this approach a balance needs to be struck between displaying the spatial distribution of

event locations and providing a visual display that allows the data to be meaningfully

interpreted. For this reason, point maps are suitable only for visualising small datasets.

Large number of point data within a small region can be condensed into single points by

converting them to marked points. For instance, instead of displaying the location of all

settlement-level outbreaks of a disease that occurred within a ward individually, wards can

be classified as either disease-positive or disease-negative and mapping the point location

of disease-positive wards (Hamoonga et al., 2014). John Snow’s work investigating the

outbreak of cholera that occurred in London in the 1850s (Snow, 1855) shows that point

maps are a simple yet extremely effective tool for visualising disease event locations and

developing hypotheses about factors influencing the distribution of disease. Using a point

map showing the location of cholera deaths around Broad Street in Soho (Figure 2.1)

Snow hypothesised that water from a single communal water pump was the source of

infection.

Easy access to GIS packages (including those that retrieve spatial data from the Internet

on the fly, such as Google Earth) and the widespread availability of detailed spatial data

means that it is relatively easy to visualise point data interactively and in finer detail. R

packages such as plotKML (Hengl et al., 2014) provide a means for overlaying point pat-

terns directly onto Google Earth maps. This allows visualisation of point patterns to be

interactive. Point locations of disease events are superimposed over a real-time repre-

sentation of the physical landscape, facilitating hypothesis generation about disease oc-

currence. Stevenson et al. (2005) superimposed the location of Varroa destructor-positive

honey bee apiaries on a Google Earth image of the Auckland (New Zealand) metropolitan

region, identifying a high density of positive apiaries in close proximity to Auckland In-

ternational Airport. This supported the hypothesis that the airport was the portal of entry

of Varroa destructor into New Zealand.
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Figure 2.1: John Snow’s map of Soho showing the location of deaths (•) during the 1854 outbreak
of cholera in London. The location of water pumps are shown as crosses (×). Reproduced from
(Gilbert, 1958)



10 Spatial point pattern analyses: A review

2.3 Describing spatial point patterns

2.3.1 First-order properties

In spatial epidemiology the term ‘first order’ is used to describe broad-scale trend in the

spatial pattern of the outcome of interest (Pfeiffer et al., 2008). To investigate spatial

trend in a point pattern dataset a useful starting point is to estimate the intensity of the

point pattern. Broadly speaking, the intensity of a point pattern is the expected number

of points per unit area of the study region (Diggle, 2003). Intensity may be constant

(homogenous) or it may vary from one location to another (inhomogeneous).

Several methods can be used to describe the first-order properties and/or intensity of

a point-pattern. These methods include: quadrat counts, Stienen diagrams, and kernel

smoothing. These methods are briefly discussed below.

Quadrat methods are area-based methods that involve dividing the study region into sub-

regions of equal size called quadrats (Stoyan and Stoyan, 1994). The point intensity

is then obtained by dividing the number of events in each quadrat by the quadrat area.

A disadvantage of this technique is the loss of information that occurs from aggregat-

ing the data. Furthermore, the choice of quadrat size influences the number of point

events per quadrat and in situations where the quadrat size is too small there will be many

empty quadrats, making interpretation difficult. Figure 2.2 shows the distribution of 25

km2 quadrats containing at least one dairy farm hypothesized to be at risk of acquiring

multidrug-resistant Salmonella Newport (Durr and Gatrell, 2004). By visualising the spa-

tial distribution of quadrats in this example, we cannot make a distinction between a 25

km2 quadrat containing 4 farms and one that contains only 1 farm. Intensity of the event

of interest within each quadrat is lost (though, legitimately the authors could have chosen

to show it). There is little information we can get to determine the intensity of the event of

interest within each quadrat. This together with empty quadrats render quadrat methods

to be of little use in veterinary epidemiology.

In a Stienen diagram, the distance for each point location and its nearest neighbour is

computed. A circle is then drawn around each point location with the radius of the circle

equal to half the distance to its nearest neighbour (Stienen, 1980; Gelfand, 2010). The

diameter of the resulting circles are equal to the nearest neighbour distances and the cir-
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cles never overlap by construction. Stienen diagrams are useful for detecting trends in

the proximity between point events. Aggregations of circles of small diameter indicate

that the distances between disease-positive locations are small. Circles of large diam-

eter indicate disease-positive locations that are isolated (i.e. the distance to the nearest

disease-positive neighbour is large). Figure 2.3 shows a Stienen diagram of Vietnamese

communes positive for FMD serotype O in 2007. The aggregations of small diameter cir-

cles in the north of the country and on the eastern border of the central area of the country

are consistent with the situation where there is commune-to-commune spread of disease.

The larger diameter circles are interpreted as communes where disease occurred but was

quickly stamped out.

Kernel smoothing is a non-parametric method used to estimate the intensity of one-

dimensional and two-dimensional data (Pfeiffer et al., 2008). In some aspects, kernel

estimates are like histograms in that they sort sample values (point intensity) into classes

and display their frequencies as a colour-coded raster map. Kernel estimates are useful for

displaying the intensity of point locations because they make no assumptions about the

distributional form of the data (Stoyan and Stoyan, 1994). This is particularly important

because point patterns do not typically follow parametric distributions. Kernel smoothing

provides an indication of local spatial variation in point intensity. The technique involves

placement of a regular grid of cells over the region of interest, placement of a kernel of

radius τ over each point and then estimating point intensity as the sum of the kernel es-

timates that fall within each grid cell (Figure 2.4) (Diggle, 2003; Gatrell et al., 1996).

The radius of the kernel τ is usually referred to as the bandwidth or smoothing parame-

ter, and has a direct bearing on how the point density is displayed. When τ is small the

kernel smoothed surface will be similar to the spatial point pattern on which it is based.

Conversely, when τ is large a greater amount of smoothing will be applied, obscuring de-

tail. While statistical parameters such as normal optimal smoothing, cross-validation, and

plug-in methods (Hogg, 1979; Rudemo, 1982; Bowman, 1984; Sheather and Jones, 1991)

provide some objectivity for selecting a suitable bandwidth, a priori information about

the spatial point pattern being described should also be used to guide decision making.

When interpreting smoothed plots of the density of counts of disease, we need to account

for the spatial distribution of the underlying population at risk (Pfeiffer et al., 2008).

Large numbers of cases present at a given location may either represent a true elevation in
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incidence or, more simply may reflect the spatial distribution of the underlying population

at risk with larger numbers of cases of disease in areas where population counts are highest

(Kelsall and Diggle, 1995a,b; Lawson, 2006). One way to account for variation in the

spatial distribution of the population at risk is to develop two kernel smoothed surfaces:

the first for disease-positive locations and the second for disease-positive and disease-

negative locations. An estimate of the spatial variation in disease frequency corrected for

the spatial distribution of the population at risk is made by dividing the kernel smoothed

surface of the disease-positive locations by the kernel smoothed surface of the disease-

positive and disease-negative locations (Pfeiffer et al., 2008).

Figure 2.5 shows the prevalence of BSE-positive cattle holdings across Great Britain as

at 30 June 1997 (Stevenson et al., 2000). Figure 2.5 shows an obvious first-order trend in

the spatial distribution of BSE-positive cattle holdings with relatively high intensities in

the south and low intensities in the north. In addition to first-order trend, local features in

the data are clearly visible: high intensities of BSE in the south west and low intensities

in the east.
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Figure 2.2: Map of England and Wales showing the distribution of 25 km2 quadrats containing
at least one dairy farm hypothesised to be at risk of acquiring multidrug-resistant Salmonella
Newport. Reproduced from Durr and Gatrell (2004).
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Figure 2.3: Steinen diagram showing the point location of FMD serotype O-positive communes
in Viet Nam in 2007. Circles have been drawn around each point location with the diameter of
each circle equal to the distance to the nearest FMD-positive commune
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Figure 2.4: Explanation of kernel smoothing of a spatial point process. Kernel smoothing involves
placement of a regular grid of cells over the region of interest and placement of a kernel of radius
τ over each point. Intensity is estimated as the sum of the kernel estimates that fall within each
grid cell. Reproduced from Bailey and Gatrell (1995).
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Figure 2.5: Prevalence of BSE-positive holdings across Great Britain (expressed as the number of
BSE-positive holdings per 100 holdings per square kilometre) on 30 June 1997. EA Eastern, MW
Mid and West, NO Northern, SC Scotland, SE South east, SW South west, WA Wales. Reproduced
from Stevenson et al. (2000).
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2.3.2 Second-order properties

The term ‘second-order’ is used to describe small-scale variation is a spatial point pattern

typically arising from interactions of individual point locations with its neighbours (Pfeif-

fer et al., 2008). To assess one aspect of the second-order characteristics of a spatial point

pattern, an exploratory technique is to take each event location in the study area and mea-

sure the distance to its nearest neighbouring event. This is called the nearest neighbour

event-event distance. If there are n events in a study area, there will be n nearest neigh-

bour event-event distances. For a specified distance h, G(h) is defined as the proportion

of all nearest neighbour event-event distances that are less than or equal to h. A plot of

G(h) as a function of h provides a graphical description of clustering in the process under

investigation. Interaction clustering is said to be present if the curve shows a steep rise at

small values of h.

The K-function (or reduced second moment measure) (Bartlett, 1964; Ripley, 1976, 1977)

is a method used to quantify spatial dependence in spatial point pattern data sets. The K-

function provides a summary measure of spatial dependence over distances beyond the

distance to a point’s nearest neighbour. This property makes it more desirable than the

nearest-neighbour function described above. The K-function is defined as the expected

number of further points within a distance h of an arbitrary point, divided by the overall

density of points (Pfeiffer et al., 2008). For clustered patterns, case events are likely to be

surrounded by other case events and for small vales of distance h, K(h) will be relatively

large. Conversely, if cases are regularly spaced, each one is likely to be surrounded by

empty space and, for small values of distance, K(h) will be small.

2.4 Explaining spatial point patterns

The preceding text has briefly outlined the steps involved when analysing a spatial point

pattern data set. The first step involves visualising the spatial distribution of the recorded

point events. This is then followed by analytical procedures designed to identify both the

first-order and second-order trends in the data. A typical analysis would involve estima-

tion of point intensity using kernel smoothing techniques and/or quadrat counts. Having

described the intensity of point events, we may then wish to explore the level of interaction
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among points using either nearest neighbour methods or the K-function. In a veterinary

epidemiological context a typical interaction question would be: given the nature of this

disease, is the observed level of interaction greater than the interaction expected if the

point locations were distributed completely at random? If points are assigned a mark (for

example, labels identifying them as disease positive or disease negative) we can segregate

the points based on their mark and then separately explore interaction and intensity for

each set to determine how disease status affects both the first- and second-order prop-

erties of the data. Equally important, it may be useful to use modelling techniques to

account (i.e. control) for the presence of explanatory variables that may at least partly ex-

plain the observed spatial distribution of disease-positive locations. Knowing the relative

contribution of a given explanatory variable on the intensity of disease-positive locations

then provides a useful starting point for application of control measures. In areas where

the explanatory variable is present (or present at high levels) steps should be taken to re-

duce the likelihood of a given location becoming disease positive (e.g. through enhanced

biosecurity, use of prophylactic vaccinations and so forth).

An additional useful side effect of modelling is that it allows one to visualise the residual

spatial variation in disease risk that remains once one has controlled for the presence

of known explanatory variables. This idea of ‘residual disease risk’ is closely aligned

with the concept of physical clustering, introduced in Section 2.1 and concisely defined

by Elliot et al. (2000). Elliot et al. (2000) defines a disease process to be (physically)

clustered if disease events remain aggregated once known explanatory variables have been

accounted for. Returning to the example cited in Section 2.3.1 we may observe large

numbers of cases of disease in a given area. This may represent a true elevation in disease

frequency or more simply may be a function of the spatial distribution of the underlying

population at risk with large numbers of cases of disease in areas where population counts

are highest. In this situation Elliot et al.’s criteria would require us to account (control) for

the spatial distribution of the population at risk before declaring a physical disease cluster

to be present.

When working with non-spatial data it is common to use contingency tables (2 × 2 tables)

to quantify the association between putative explanatory variables and a disease outcome

(Dohoo et al., 2003). When working with spatial point pattern data sets the association

between the intensity of a spatial point pattern and a hypothesised explanatory variable
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can be assessed using the rhohat procedure (Baddeley et al., 2012) implemented within

the spatstat package (Baddeley and Turner, 2005) in R. In brief, the rhohat procedure

requires two input variables: (a) a pixel image (equivalent to a raster map) showing the

intensity of the spatial point pattern of interest, and (b) a pixel image of the explanatory

variable of interest (e.g. elevation). As output the procedure produces a line plot showing

point pattern intensity (and a 95% confidence interval around that estimate) as a function

of the numeric values of the explanatory variable pixel image. This procedure makes

it relatively straightforward to determine firstly if there is an association between the

intensity of a spatial point pattern and a hypothesised explanatory variable and secondly

the nature of that association, if one exists. Using rhohat analyses as a method to ‘screen’

a set of putative explanatory variables, the logical next step would be to include each of the

explanatory variables shown to be associated with point pattern intensity in a multivariable

model.

Unlike models used in classical statistics, point process models (i.e. models of spatial

point patterns) are specified in terms of their conditional intensity rather than their likeli-

hood. The spatstat package(Baddeley and Turner, 2005) implemented in R (R Develop-

ment Core Team, 2014) provides a number of functions for fitting point process models

and for evaluating their fit. Point process models fitted by the spatstat package are ex-

pressed in terms of their Papangelou conditional intensity (Papangelou, 1974) function as

follows:

logλ(u, x) = φT b(u) + θTS(u, x) (2.1)

In Equation 2.1 the term φT b(u) represents the broad-scale trend component of the con-

ditional intensity and θTS(u, x) represents the spatial interaction component. To model

broad-scale trend linear combinations of explanatory variables may be included in addi-

tion to an offset term. In spatial epidemiology, it would be common to apply an offset to

represent the spatial distribution of the underlying population at risk.

Selection of explanatory variables that best explain the point process under investigation

can be carried out using a backward stepwise variable selection approach. Each of the

explanatory variables that are deemed to be associated with the point process (based on

the rhohat analyses described in Section 2.4) are entered into the model. Explanatory
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variables that are not statistically significant (as estimated by a z test) are then removed

from the model one at a time, beginning with the least significant, until the estimated

regression coefficients for all of the remaining explanatory variables are significant at an

alpha level of less than 0.05.

Once broad-scale trend (i.e. the first-order properties) of the spatial point pattern are

accounted-for focus switches to accounting for the second-order properties of the data.

This is carried out by inclusion of a spatial interaction term into the model, analogous to

the ‘family’ argument in general linear regression equations (Baddeley and Turner, 2006).

Interpoint interaction terms available in the spatstat package include: Poisson, Strauss,

Strauss process with hardcore, pairwise soft core interaction, pairwise interaction step

function potential, Lennard-Jones potential, Geyer’s saturation process, and Ord’s pro-

cess. The Geyer interaction term is comprised of two parameters, a user-defined constant

greater than zero c (the saturation threshold) within a spatial radius r of a given point. For

a given analysis r is set to a value deemed to be an appropriate range of distance over

which the effect of a point location in the study region might influence other locations.

The value of r can then be tested against a series of candidate c values. On each occasion

model diagnostics are carried out to determine whether or not the parameterised spatial in-

teraction term has appropriately accounted-for the second order features of the data. The

appropriateness of the spatial interaction term can be assessed using a quantile-quantile

plot implemented in the qqplot.ppm procedure in spatstat.

Outputs from a point process model are regression coefficients for each of the parame-

terised explanatory variables with the exponent of the regression coefficient for a given

explanatory variable interpreted as the relative change in spatial point pattern intensity

corresponding to a one-unit change in the explanatory variable. Model fit can be assessed

using the diagnose.ppm procedure implemented in spatstat. The diagnose.ppm function

produces a series of diagnostic plots using the residuals from the fitted point process

model. These plots can be used to assess goodness-of-fit, to identify outliers in the data,

and to identify departures of the observed data from the fitted model.
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Risk factors for foot-and-mouth disease in

Zambia, 1981-2012

Abstract – The aim of this study was to describe the spatial distribution of foot-and-mouth disease
(FMD) outbreaks in Zambia for the period January 1981 to December 2012 and to quantify the
association between geographical features (proximity to roads, national parks, wetland areas) and
the spatial distribution of FMD using a Poisson point process model.

Details of FMD outbreaks retrieved from the Zambian Department of Veterinary and Livestock De-
velopment included the date of onset of clinical signs and the name of the ward in which the index
case enterprise was located. A total of 62 FMD outbreaks occurred throughout the study period. Out-
breaks occurred in the south of the Southern province along the border with Namibia and Botswana
(n = 5), in the Western province (n = 2), in the Southern and Central provinces on the Kafue flood
plains (n = 44), and in the north east of the country close to the border with Tanzania (n = 11).
Increases in distance to the nearest major international border crossing, distance to the nearest major
road, distance to the wetland area of the Kafue flood plain, wetness index and elevation were all as-
sociated with a decrease in FMD-outbreak ward intensity. Our analyses support the hypothesis that
in drier areas of the country cattle are more likely to aggregate around communal drinking pools.
Aggregation of cattle provides conditions suitable for FMD spread and detection.

Hamoonga R, Stevenson MA, Allepuz A, Carpenter TE, Sinkala Y (2014) Risk factors for foot-and-
mouth disease in Zambia, 1981-2012. Preventive Veterinary Medicine 114: 64 – 71.

3.1 Introduction

The first reported outbreak of foot-and-mouth disease (FMD) in Zambia occurred in 1933

(Morris, 1934). With hindsight, the absence of FMD in Zambia prior to 1933 can be

attributed to the rinderpest panzootic of 1896 that swept through the southern African re-

gion, killing large populations of cattle, buffaloes and other wild ungulates (Condy, 1979;

Thomson, 1995). Between 1933 and 1983 FMD outbreaks in Zambia were reported on
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29 occasions (Overby and Zyambo, 1983). Since 1983 outbreaks of FMD have continued

to occur in Zambia on an almost annual basis.

FMD is a highly infectious disease of cloven-hoofed animals is caused by an Aphthovirus

of the family Picornaviridae. It is characterised by high (up to 100%) morbidity in sus-

ceptible animal populations. As early as 1931 the impact of FMD on trade was apparent

when Zambian animal health authorities placed restrictions on the importation of stock

from Zimbabwe (then Rhodesia) due to ongoing outbreaks of FMD in that country (Smith,

1932). While the overall impact of FMD on livestock productivity in Zambia is believed

to be relatively small, the primary source of loss arising from the on-going presence of

disease is the inability to export meat or meat product due to trade restrictions. In a re-

port commissioned by the World Bank in 2011 (Anonymous, 2011) it was estimated that

if Zambia’s beef and dairy populations were certified as FMD free their combined out-

put had the potential to result in a seven-fold increase in export earnings from USD 230

million to USD 1.6 billion per year. If this situation were to eventuate it would mean

that export of livestock and livestock product would constitute approximately 10% of the

country’s gross domestic product for 2011.

Between 1933 and 1981 identified outbreaks of FMD were confined to three areas of

Zambia (Overby and Zyambo, 1983; Perry and Hedger, 1984): (1) in the southern part

of the Southern province close to the border with Namibia and Botswana; (2) along the

border of the Southern and Central provinces on the Kafue flood plains; and (3) along

the border with Tanzania in the Northern province of the country. Risk factors for the

spatial distribution of FMD outbreaks in sub-Saharan Africa include proximity to wildlife,

proximity to road and rail networks, the presence of communal drinking places, livestock

density and proximity to international border crossings (Perry and Hedger, 1984; Vosloo

et al., 2009; Allepuz et al., 2013). The exact role or mechanism by which these factors

influence and/or transmit FMD in susceptible populations is only partially understood

(Dawe et al., 1994) and complex (Sutmoller et al., 2000). In addition, these risk factors

have also been shown to behave differently in different environments (Perry and Hedger,

1984).

For countries where FMD is endemic details of the location and timing of outbreaks, gath-

ered over a number of years, can provide a useful starting point for development of risk-

based approaches for FMD surveillance. Knowledge of the location of FMD ‘hotspots’
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(areas where outbreaks are known to occur on a regular basis) mean that measures can be

deployed in these areas to either reduce the likelihood of incursion or reduce the likelihood

of spread of disease should an incursion occur. Ultimately this approach should reduce

the number of infected livestock enterprises minimising productivity losses in suscepti-

ble populations. With this background, the aim of this work was to describe the spatial

distribution of FMD outbreaks in Zambia for the period 1981 to 2012 and to quantify the

association between geographical features of the landscape (proximity to roads, national

parks, wetland areas) and the spatial distribution of FMD outbreaks.

3.2 Materials and methods

Between 1981 and 2012 officials of the Zambian Department of Veterinary and Livestock

Development (DVLD) recorded details of FMD outbreaks affecting cattle. Details of

the index case (that is, the first enterprise identified as FMD-positive) included the date

of onset of clinical signs and the name of the ward in which the index case enterprise

was located. The total land area of Zambia is approximately 753,000 km2. In 2011 the

country was comprised of 9 primary administrative areas called provinces. Provinces

were divided into secondary administrative areas called districts (n = 72) and districts

divided into tertiary administrative areas called wards (n = 1421). The median land area

of Zambian wards was 300 km2 (Q1 95 km2; Q3 665 km2).

At the time of initial investigation of the index case for each outbreak samples of blood

were collected into sterile blood collection tubes. Serotyping was carried out at the world

reference laboratory for FMD at Pirbright (United Kingdom). Throughout the 31-year

study period, four FMD serotypes were identified by laboratory diagnosis: the Southern

African type (SAT) 1, 2, 3 and serotype O. For the analyses presented in this paper, the

unit of interest was the ward and the outcome of interest was a laboratory confirmed

diagnosis of FMD reported in a given ward, in a given year. All of the analyses presented

in this paper are based on the index case details recorded for each FMD outbreak. The

period of interest was from 1 January 1981 through 31 December 2012.

Our first task was to subset the population of Zambian wards to include only those that

were known to contain cattle. The Gridded Livestock of the World (Robinson et al., 2007)
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database for 2005, produced by the Food and Agriculture Organization of the United Na-

tions, was used to develop a raster map covering the spatial extent of Zambia, comprised

of 243 by 206 pixels (each of dimensions 5.5 km by 5.5 km) showing the number of cat-

tle per square kilometer. This raster map was filtered to include only those pixels where

cattle were present. The filtered map was then overlaid on a vector map of Zambian ward

boundaries and those wards with cattle (n = 1114) were retained as the cattle-containing

ward population at risk.

Variables thought to influence the spatial distribution of FMD in Zambia (referred to as

explanatory variables in the remainder of the paper) were in two general classes: de-

mographic and geographic. Demographic data included the raster map of cattle density,

described earlier. Physical landscape explanatory variables included the point location

of major international border crossings, national and secondary road networks, railway

lines, national parks, wetlands and elevation. The road, railway line, national park and

wetland maps were obtained as vector maps from the Central Statistical office of Zambia

(Anonymous, 2013a). Elevation data were obtained from the DEM Explorer web site

(Han et al., 2012) at a resolution of 30 metres. A raster map of topographical wetness

index was developed for the entire land area of Zambia using the digital elevation model

data. Wetness index provides a measure of water accumulation as a function of slope and

catchment. Wetness index was calculated using a physically based, variable contributing

area model of basin hydrology procedures (Beven and Kirkby, 1979) implemented in the

Geographic Information System GRASS 6.4.3 (GRASS Development Team, 2012).

The spatial distribution of FMD-outbreak wards in Zambia for the period 1981 to 2012

(and indeed the spatial distribution of any infectious disease affecting livestock enter-

prises) can be classified into two components: broad-scale trend and dependence (or

interaction) between individual points. To identify broad-scale trend the point location

of the centroids of FMD-outbreak wards were overlaid on an intensity map of cattle-

containing wards. The intensity map of cattle-containing wards was calculated using the

spatstat package (Baddeley and Turner, 2005) implemented within R (R Development

Core Team, 2014). This analysis was carried out using a regular grid of 200 × 200 cells

superimposed over the extent of Zambia, with the standard deviation of the Gaussian

kernel (that is, the bandwidth) fixed at 12,000 metres.

The presence of spatial dependence in the data was assessed by computing the inhomoge-
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nous K-function (Ripley, 1976, 1977; Cressie, 1993; Baddeley et al., 2000; Diggle, 2003)

for the FMD-outbreak wards and the cattle-containing Zambian ward population at risk.

Spatial dependence was deemed to be present if (visually) there were relatively high val-

ues of K at given scales of distance for the FMD-outbreak wards, relative to the estimates

of K computed for the cattle-containing ward population at risk (Bailey and Gatrell, 1995;

Pfeiffer et al., 2008).

To identify which of the hypothesised explanatory variables were associated with broad

scale spatial trend a kernel smoothed estimate of the intensity of FMD-outbreak wards

was developed using a regular grid of 200 × 200 cells using a fixed bandwidth of 12,000

metres, similar to the approach used for the cattle-containing wards. Raster maps were

then developed showing, for each pixel, the distance (in kilometres) to each of the ex-

planatory variables in vector format: major international border crossings, major roads,

railway lines, national parks, and wetland areas. The rhohat procedure (Baddeley et al.,

2012) implemented in spatstat was then used to plot FMD-outbreak ward intensity as a

function of distance to a given vector explanatory variable. Each of the hypothesised

explanatory variables in raster format (cattle density, wetness index, and elevation) were

summarised at the ward level and the rhohat procedure used to plot FMD-outbreak ward

intensity as a function of the range of numeric values recorded for each raster feature.

Hypothesised explanatory variables where there was a clearly identifiable association with

FMD-outbreak ward intensity were then selected as candidate explanatory variables in a

point process regression model. The decision to include a given explanatory variable for

modeling was based on biological plausibility and the presence of a clearly identifiable

relationship between FMD-outbreak ward intensity and either the distance to a given ex-

planatory variable (for those in vector format) or the value of the explanatory variable

itself (for those in raster format).

Point process models fitted in spatstat are expressed in terms of the Papangelou condi-

tional intensity function (Papangelou, 1974; van Lieshout, 2000) denoted by λ(u, x). In

general terms the intensity of FMD-outbreak wards λ(u, x) is a loglinear function of pa-

rameters φ and θ:

logλ(u, x) = φT b(u) + θTS(u, x) (3.1)
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In Equation 3.1 the term φT b(u) represents the broad-scale trend component of the con-

ditional intensity and θTS(u, x) represents the spatial interaction component. To model

broad-scale trend we included an offset term representing the spatial distribution of cattle-

containing ward-years at risk in addition to each of the explanatory variables identified as

associated with FMD-outbreak ward intensity from the rhohat analyses, described earlier.

To select those explanatory variables that best explained FMD-outbreak ward intensity

a backward stepwise approach was used. Each of the explanatory variables that were

associated with FMD-outbreak ward intensity from the rhohat analyses were entered into

the model. Explanatory variables that were not statistically significant (as estimated by a

z test) were removed from the model one at a time, beginning with the least significant,

until the estimated regression coefficients for all of the remaining explanatory variables

were significant at an alpha level of less than 0.05.

The inhomogenous K function analyses failed to identify spatial dependence in the data

up to a distance of 50 kilometres implying that inclusion of a spatial interaction term into

the model was unnecessary. Regardless, a second model was developed that included a

Geyer interaction term (Geyer, 1999). The Geyer interaction term is comprised of two

parameters, a user-defined constant greater than zero c (the saturation threshold) within a

spatial radius r of a given point. For these analyses we set r to 15 km and tested a series

of candidate c values ranging from 1 to 10 using an approach similar to that described by

Turner (2009). Beyond the interaction distance of 15 km (thought to be an appropriate

range of distance over which the effect of a given FMD-positive location might influence

other locations) no further point-to-point interactions were allowed and the model reduces

to a Poisson model.

Outputs from the point process model were regression coefficients for each of the param-

eterised explanatory variables with the exponent of the regression coefficient for a given

explanatory variable can be interpreted as representing the effect of a one-unit increase in

the value of the explanatory variable on FMD-outbreak ward intensity

Model fit was assessed using the diagnose.ppm procedure implemented in spatstat. The

diagnose.ppm produces a series of diagnostic plots using the residuals from the fitted point

process model (Baddeley and Turner, 2005). These plots were used to assess goodness-

of-fit, to identify outliers in the data, and to reveal departures from the fitted model. The

appropriateness of the models with and without the Geyer interaction term was assessed
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using a quantile-quantile (QQ) plot implemented in the qqplot.ppm procedure in spatstat

(Baddeley and Turner, 2005). One hundred simulations were carried out to define the

limits of the reference quantiles for the Q-Q plot.

3.3 Results

Figure 3.1 is an image plot showing the intensity of cattle-containing wards in Zambia.

Superimposed on this plot are the point location of the n = 62 FMD-outbreak wards

identified during the period January 1981 through December 2012. Of note in Figure 3.1

is the presence of outbreaks in the south of the Southern and Western provinces along the

border with Namibia and Botswana (n = 5). Of note as well is the relatively large number

of outbreaks in the Southern and Central provinces on the Kafue flood plains (n = 44)

and along the border with Tanzania in the north east of the country (n = 11). Figure 3.2

is a frequency histogram showing the number of FMD-outbreak wards detected per year

for the period 1981 through 2012. FMD outbreaks occurred in 19 of the 31 years that

comprised the study period. The minimum number of ward-level outbreaks per year was

one (1987, 1988, 1992, 1995, 2002, and 2007); the maximum number was 12 (2008).

Figure 3.3 is a series of maps showing the spatial distribution of selected explanatory

variables included in the final point process model: location of major international bor-

der crossings, location of major roads, wetness index and elevation. Figure 3.4 shows

the location of the major wetlands in Zambia, as recorded by Central Statistical Office of

Zambia. For the purpose of modeling we classified each of the wetland polygons into one

of four major groups, labeled A, B, C and D in Figure 3.4. Based on our descriptive anal-

yses (Figure 3.1) there was a relatively strong spatial association between FMD-outbreak

ward intensity and proximity to wetland area A. By grouping the wetlands into categories

our intention was to quantify the strength of this association for each wetland area.

Figure 3.5a shows the distance map computed for the Zambian railroad network. The cor-

responding rhohat plot, showing FMD-outbreak ward intensity as a function of distance

from the nearest railroad is shown in Figure 3.5b. In Figure 3.5b it is evident that FMD-

outbreak ward intensity decreased as the distance of a ward from the nearest railroad

increased. Similar plots (not necessarily demonstrating the same pattern of association)
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were produced for each of the hypothesised explanatory variables described in this paper

(data not presented).

Estimated regression coefficients and their standard errors for each of the explanatory

variables included in the point process model without the Geyer interaction term are

shown in Table 3.1. FMD-outbreak ward intensity increased with increases in the dis-

tance of a ward centroid from wetland areas B, C and D (as defined in Figure 3.4). FMD-

outbreak ward intensity decreased with increases in the distance to the nearest major in-

ternational border crossing, distance to the nearest major road, distance to wetland area

A (as defined in Figure 3.4), maximum ward-level wetness index and median ward-level

elevation. The results of the point process model show that FMD-outbreak ward intensity

decreased in wetter areas of the country: unit increases in maximum ward-level wetness

index decreased FMD-outbreak ward intensity by a factor of 0.88 (95% CI 0.80 to 0.97).

The cumulative residual sum plots produced by the diagnose.ppm procedure lay predom-

inantly within the 2σ-limits. The exception was the easting and northing coordinates

consistent with the location of wetland area A where there were aggregations of positive-

sign residuals. This indicates the presence of FMD in this area of the country that was not

completely explained by the explanatory variables included in the point process model

shown in Table 3.1. The QQ plot of the residuals from the point process model lay within

the bounds of the reference quantiles, indicating that the model presented in Table 3.1

provided an adequate representation of the interpoint interaction in the data.
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Figure 3.1: Image plot showing the intensity of cattle-containing wards (expressed as the number
of cattle-containing wards per square kilometer). Superimposed on this plot are the 62 point loca-
tions of wards identified with FMD outbreaks during the period January 1981 through December
2012.
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Figure 3.2: Foot-and-mouth disease in Zambia, January 1981 through December 2012. Fre-
quency histogram showing the number of index FMD-outbreak wards detected per year.
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(a) (b)

(c) (d)

Figure 3.3: Foot-and-mouth disease in Zambia, January 1981 through December 2012. Maps of
Zambia showing: (a) location of major international border crossings; (b) location of major roads;
(c) maximum ward-level wetness index, as described in the text; and (d) median ward elevation
(in metres).
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Figure 3.4: Foot-and-mouth disease in Zambia, January 1981 through December 2012. Map of
Zambia showing the location of major bodies of water. For modeling these have been arbitrarily
grouped into the four regions (A, B, C and D) delineated by the dashed lines shown in the above
plot.
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(a)

(b)

Figure 3.5: Foot-and-mouth disease in Zambia, January 1981 through December 2012: (a) image
plot showing distance (in kilometres) from railroads; (b) rhohat plot showing FMD-outbreak ward
intensity as a function of distance (in kilometres) from the nearest railroad.
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Table 3.1: Estimated regression coefficients and their standard errors from a point process model
showing the association between distance to the nearest major border crossing, distance from
major roads, distance from wetlands, maximum ward-level wetness index and median ward-level
elevation on the intensity of FMD-outbreak wards in Zambia, 1981 to 2012.

Explanatory variable Coefficient (SE) z test Intensity (95% CI)

Intercept -34.7601 (4.894)

Border crossing (25 km increases) -0.4019 (0.0574) < 0.01 0.67 (0.60 to 0.75)

Distance from roads (25 km) -1.1093 (0.2712) < 0.01 0.33 (0.19 to 0.56)

Distance from wetland ‘A’ (25 km) -0.8064 (0.1186) < 0.01 0.45 (0.35 to 0.56) a

Distance from wetland ‘B’ (25 km) 0.8335 (0.1550) < 0.01 2.30 (1.70 to 3.12)

Distance from wetland ‘C’ (25 km) 0.7400 (0.1616) < 0.01 2.10 (1.53 to 2.88)

Distance from wetland ‘D’ (25 km) 0.3311 (0.0738) < 0.01 1.39 (1.20 to 1.61)

Maximum wetness index (unit increases) -0.1228 (0.0492) < 0.05 0.88 (0.80 to 0.97)

Median elevation (100 m increments) -0.1904 (0.0942) < 0.05 0.83 (0.69 to 0.99)

a Interpretation: 25 km increases in the distance from the boundaries of water area ‘A’ (as shown in Figure 3.4) decreased the intensity
of FMD-outbreak wards by a factor of 0.45 (95% CI 0.35 to 0.56).
SE: standard error.
CI: confidence interval.
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3.4 Discussion

The development of both targeted control strategies and effective surveillance systems

for FMD occurrence is dependent on knowledge of ‘hotspots’; areas where outbreaks of

disease are known to occur on a regular basis. In Zambia, the system of livestock hus-

bandry system is extensive and traditional pastoralists manage greater than 80% of the

total cattle population (Anonymous, 2011). There is little control over livestock move-

ment as animals are moved from one location to another in search of suitable grazing

areas. Spatial modeling is useful in this situation because it provides the opportunity to

quantify the association (albeit at a crude level when applied at the whole-country level)

between physical landscape features and the starting point (i.e. the index case location) of

individual FMD outbreaks. In turn, this allows animal health authorities to better target

disease surveillance and control activities.

Our analyses show that the distribution of FMD outbreaks in Zambia for the period 1981

to 2012 was almost identical to the distribution of disease outbreaks documented prior to

1981 (Overby and Zyambo, 1983; Perry and Hedger, 1984). This consistency provides

indirect evidence of an absence of selection or misclassification bias in the 1981 to 2012

data. While under-reporting of FMD outbreaks in endemic countries is common (Sump-

tion et al., 2008) the consistent appearance of FMD in the three regions shown in Figure

3.1, in the absence of a formal disease event data collection and management system,

provides a reasonable level of confidence that there was little systematic error in disease

reporting. Furthermore, the spatial persistency of the identified outbreak areas implies

that risk factors for FMD incursions in Zambia have remained relatively constant over

time.

We found that distance to the nearest major international border crossing, distance to the

nearest major road, wetness index and elevation were all associated with FMD-outbreak

ward intensity. While outbreaks of FMD are known to occur in both rainy and dry seasons,

dry season outbreaks have been reported to account for a larger proportion (up to 70%)

of outbreaks in Zambia in a given year (Perry and Hedger, 1984). The increased risk

of FMD occurrence in drier areas of the country (that is, wards with a lower maximum

water index) can be attributed to animals in these areas being more likely to move in

search of water and aggregate at communal drinking pools. Wetlands, such as the Kafue
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flood plains (located in the north of the Southern province, labeled ‘A’ in Figure 3.4) are a

popular aggregation point for large numbers of cattle during winter grazing (Overby and

Zyambo, 1983; Perry and Hedger, 1984; Muma et al., 2011). Our analyses support the

hypothesis that in drier areas of the country cattle are more likely to aggregate around

communal drinking pools. Aggregation of cattle then provides conditions suitable for

FMD spread.

Although proximity to railways showed a clearly identifiable association with FMD out-

breaks (Figure 3.5b), after adjusting for the effect of the other explanatory variables in-

cluded in the model, proximity to railways was not significantly associated with FMD-

outbreak ward intensity. This demonstrates that proximity to railways was confounded

by one or more of the other explanatory variables included in the point process model.

While railways can facilitate disease transmission by allowing people or animals carrying

infection from distant areas to come into contact with naive populations (Muuka et al.,

2013) the presence of disease in the population of domestic livestock in close proximity

to railways could also be simply attributed to the fact that relatively large numbers of

the rural human population (and therefore the livestock population at risk) live in close

proximity to rail networks. This observation represents an important lesson for the spatial

epidemiologist. The presence of an association between a single geographical feature and

disease intensity needs to be interpreted with caution because of the fact that geographi-

cal features (particularly if they are man-made) tend to be spatially correlated with other,

potentially more direct, determinants of disease. The point process modeling approach

presented in this study provided an effective means for dealing with this problem.

3.5 Conclusion

Our analyses show that the spatial distribution of FMD outbreaks in Zambia for the period

1981 to 2012 followed a similar pattern to that of the outbreaks recorded between 1933

and 1981. The intensity of FMD-outbreak wards was associated with distance to the

nearest major international border crossing, distance to the nearest major road, wetness

index and elevation. The increased risk of FMD occurrence in drier areas of the country

can be attributed to animals in these areas being more likely to move in search of water

and aggregate at communal drinking pools. Our analyses support the hypothesis that in
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drier areas of the country cattle are more likely to aggregate around communal drinking

pools. Aggregation of cattle is conducive for FMD spread and detection.
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